
MAS241	Interactive	Web	Design	
Week	8	–	Google	Maps	

1	

Week 8 – Google Maps

Introduction
Hopefully	by	now	you’ll	have	seen	the	possibilities	that	jQuery	provides	for	rich	
content	on	web	sites	in	the	form	of	interaction	and	media	playback.	This	week	
we’ll	be	extending	this	into	the	realm	of	Google	Maps.	
	
Google	makes	it	easy	to	embed	a	map	into	a	web	page,	but	Google	also	provides	
an	API	(Application	Programming	Interface)	for	web	designers	wanting	to	do	
more	advanced	work	with	maps.	
	
This	week	you’ll	learn	how	to	embed	a	Google	Map	into	a	web	page	and	add	
custom	markers	with	custom	labels.	

Setting Up
The	Google	Map	API	provides	access	via	a	number	of	programming	languages.	Its	
JavaScript	access	is	highly	comprehensive	but	requires	knowledge	of	‘vanilla’	
JavaScript.	Luckily,	there	is	a	useful	library	that	allows	us	to	interact	with	the	API	
using	jQuery.	In	order	to	make	use	of	this	we	have	to	do	a	bit	of	setting	up	and	
will	need	to	include	the	following	into	our	HTML	document:	
	

§ jQuery	(you	should	already	have	this	in	your	folder)	
§ Google	Maps	JavaScript	API	(we’ll	pull	this	off	Google’s	servers)	
§ jQuery	Map	library	(available	for	download	via	the	MAS241	page,	place	in	

the	same	folder	as	your	HTML	files)	
	
The	<head>	section	of	the	default	HTML	document	(available	from	the	MAS241	
page)	looks	like	this:	
	
<head>
<meta charset="utf-8">
<title>MAS241</title>
<link rel="stylesheet" href="style.css">
<script src="https://maps.google.com/maps/api/js?key=
AIzaSyD2Sf8VccLrGj_FqgQ0A_X9m6ntuxe9sZw"></script>
<script src="jquery-3.3.1.min.js"></script>
<script src="jquery.ui.map.full.min.js"></script>
<script>
$(document).ready(function() { // do not delete this line

}); // do not delete this line
</script>
</head>
	
You	can	see	(in	bold)	that	we’ve	added	a	couple	of	extra	lines	to	include	a)	the	
Google	Maps	API	and	b)	the	jQuery	Maps	library.	Make	sure	that	these	<script>	
tags	are	in	the	same	order	as	above	or	things	won’t	work	properly.	
	 	

MAS241	Interactive	Web	Design	
Week	8	–	Google	Maps	

2	

Adding a Map
There	are	three	steps	to	adding	a	map	to	your	web	page.	First,	you	must	code	
some	HTML.	Second,	you	can	add	some	CSS	to	style	the	map	(add	a	border,	
position	on	the	page).	Third,	there’s	some	hefty	jQuery	required	to	add	markers	
and	labels.	We’ll	approach	each	in	turn.	

Map HTML
Adding	the	HTML	is	the	easiest	part.	All	the	HTML	does	is	create	a	space	on	the	
page	in	which	the	map	will	load.	We	can	use	an	empty	<div>	for	this:	
	
<div id="myMap"></div>
	
Don’t	forget	to	give	the	<div>	an	ID.	We’ll	use	the	ID	as	a	hook	for	the	jQuery.	
	
Ok,	that’s	the	HTML	dealt	with	–	don’t	get	complacent,	it	gets	more	difficult	later!	

Map CSS
We’ll	create	a	CSS	rule	to	set	the	height	and	width	of	the	map.	We’ll	also	add	a	
couple	of	extra	bits	to	give	it	a	border	and	centre	it	on	the	page.	
	
#myMap {

width: 800px;
height: 450px;
border: 3px solid #000000;
margin: auto;

}
	
There’s	nothing	in	there	that	should	be	new	to	you,	but	if	you	have	any	questions	
just	ask.	You	can	set	the	width	and	height	to	whatever	you	want,	I’ve	just	chosen	
these	values	arbitrarily.	
	
If	you	check	your	HTML	page	in	a	web	browser	you	should	currently	just	see	a	
rectangle	with	black	border	that’s	centred	on	the	page.	Next	we’ll	get	a	map	to	
load	in	that	space.	

Map jQuery
Ok,	this	first	bit	will	look	easy,	but	trust	me,	it’ll	get	more	complex.	
	
If	you	downloaded	the	default	HTML	document	from	the	MAS241	page	then	
you’ll	already	have	the	$(document).ready(function() { });	coded	in	place.	
Insert	the	following	code	in	the	place	where	we	usually	put	our	jQuery:	
	
$('#myMap').gmap();
	
In	brief,	this	line	targets	our	<div>	with	the	ID	myMap	and	tells	the	maps	library	
that	this	is	where	the	map	will	be	loaded.	Save	your	HTML	file	and	test	it	in	the	
browser.	You	should	see	a	map	loaded	into	the	<div>.	
	
If	your	map	isn’t	loading	then	check	that	you	have	all	the	<script>	tags	in	the	
right	place	and	that	you	have	downloaded	the	jQuery	and	jQuery	maps	libraries	
to	the	same	folder	as	your	HTML	document.	

MAS241	Interactive	Web	Design	
Week	8	–	Google	Maps	

3	

Now	that	we’ve	got	a	map	on	the	page	we	can	now	start	to	add	to	the	code	to	
achieve	the	following	using	options:	
	

§ Centre	the	map	on	a	specified	location	
§ Zoom	in	to	a	specified	level	
§ Set	the	type	of	map	(roadmap,	satellite,	hybrid	or	terrain)	

	
The	following	options	go	inside	the	parenthesis	of	.gmap()	and	because	we’re	
using	multiple	options	we	need	to	place	them	inside	of	{ }	just	as	we	do	with	
.css()	and	.animate().	Let’s	add	them	one	at	a	time	so	you	can	see	the	changes	
in	the	HTML	document.	I’ll	space	them	out	over	individual	lines	so	it’s	easier	to	
read	and	follow.	
	
$('#myMap').gmap({

'center': '-33.773422,151.11267'

});

Option: ‘Center’
The	‘center’	option	(note	US	English	spelling)	uses	the	latitude	and	longitude	
coordinates	to	set	the	centre	point	for	the	map.	In	the	above	example,	these	are	
the	coordinates	for	Macquarie	University.	You	can	use	find	the	coordinates	of	
any	place	by	clicking	on	the	map	–	the	latitude	and	longitude	will	be	visible	at	the	
bottom	of	the	page:	
	

	
	
You	can	try	putting	in	your	own	address	and	replacing	the	coordinates	in	my	
example	with	your	own.	
	
Test	your	HTML	document	in	the	browser.	

MAS241	Interactive	Web	Design	
Week	8	–	Google	Maps	

4	

Option: ‘Zoom’
At	the	moment	we’re	using	the	default	zoom	setting,	which	I	think	it	about	5.	
Zoom	values	range	from	0	–	25	(depending	on	the	location	you’re	viewing,	some	
places	only	go	up	to	19).	
	
Add	this	code	on	the	line	after	the	‘centre’	option.	Remember	that	now	as	we’ll	
have	more	than	one	option,	we	need	to	separate	them	with	a	comma,	but	the	last	
entry	doesn’t	have	a	trailing	comma:	
	
	
$('#myMap').gmap({

'center': '-33.773422,151.11267',
	

'zoom': 17

});
	
Test	your	HTML	document	in	the	browser.	
	

Option: ‘MapTypeId’
As	mentioned	above,	there	are	four	maps	types	available:	
	

§ ROADMAP	
§ SATELLITE	
§ HYBRID	
§ TERRAIN	

	
We	can	set	the	type	of	map	using	the	‘MapTypeId’	option.	Add	this	after	the	
‘zoom’	option,	and	don’t	forget	to	separate	with	a	comma:	
	
$('#myMap').gmap({

'center': '-33.773422,151.11267',
	

'zoom': 17,
	

'MapTypeId': google.maps.MapTypeId.SATELLITE

});
	
All	map	type	values	are	set	using	google.maps.MapTypeId.TYPE-OF-MAP.	The	
type	must	be	in	uppercase	(see	the	four	types	above).	
	
Test	your	HTML	document	in	the	browser	and	try	changing	to	different	map	
types.	

Summary so Far
Ok,	so	far	so	good.	You’ve	learned	how	to	insert	a	Google	map	onto	a	page	and	set	
the	centre	point,	zoom	level	and	map	type.	

MAS241	Interactive	Web	Design	
Week	8	–	Google	Maps	

5	

	
Next	we’ll	look	at	how	to	add	custom	markers	and	labels.	

Adding Custom Markers
Adding	custom	markers	and	labels	is	quite	easy	but	the	code	is	quite	verbose	so	
pay	attention	to	detail.	
	
To	add	a	marker	we	have	to	tell	the	browser	where	to	place	it	so	we’ll	need	
latitude	and	longitude	coordinates	again.	You	should	use	the	same	ones	from	
when	we	set	the	centre	point	above.	
	
Note,	that	what	we’re	about	to	code	goes	outside	of	the	code	to	insert	the	map	on	
the	page,	i.e.	it	goes	after	the	final	})	but	before	the })	that	closes	the	
document.ready() function.	
	
Add	the	following	code:	
	 	

MAS241	Interactive	Web	Design	
Week	8	–	Google	Maps	

6	

$('#myMap').gmap('addMarker',{'position': '-33.773422,151.11267'});
	
So	again,	we’re	targetting	the	<div>	holding	the	map	using	a	jQuery	selector	and	
we’re	telling	to	add	a	marker	at	specific	coordinates.	
	
Test	your	HTML	document	in	the	browser	and	you	should	see	a	marker	on	the	
map.	
	
Try	clicking	the	marker,	it	doesn’t	do	anything,	so	next	we’ll	add	a	click()	action	
to	the	marker	and	get	it	to	display	a	label.	

Adding Custom Labels
You	may	recall	from	earlier	jQuery	classes	that	you	can	“chain”	jQuery	
commands	together,	for	example:	
	
$(‘#myDiv’).fadeOut().fadeIn().fadeOut().fadeIn();
	
We’re	going	to	“chain”	the	.click() action	onto	the	end	of	what	we	coded	in	the	
previous	step.	
	
$('#myMap').gmap('addMarker',{'position': '-33.773422,151.11267'})
.click(function() { });
	
More	code	to	come	in	this	space!	
	
Note,	I’ve	placed	the	.click()	action	on	the	following	line.	This	is	fine	and	will	
still	work.	It	just	makes	it	a	bit	easier	to	follow.	
	
It’s	worth	pointing	out	at	this	stage	that	just	like	with	any	click	event	using	
jQuery	we	can	make	anything	happen.	For	example,	you	could	start	playback	of	a	
video	or	audio	media,	go	to	another	web	page,	or	make	an	image	or	other	block	
of	text	slide	in,	fade	in,	animate	or	appear	on	the	page.	Today,	however,	we’re	
going	to	use	the	Google	Maps	API	to	make	a	label	appear	above	the	marker.	
	
In	the	space	indicated	above	we’ll	add	the	following	code.	This	is	the	action	
performed	by	the	function	called	when	the	marker	is	clicked:	
	
$('#myMap').gmap('openInfoWindow', { 'content': '<p>Text Goes
Here</p>' }, this);
	
The	‘content’	option	accepts	HTML	so	you	can	encode	a	hyperlink	or	an	image	in	
there	if	appropriate.	The	complete	code	for	this	section	should	look	like	this:	
	
$('#myMap').gmap('addMarker',{'position': '-33.773422,151.11267'})
.click(function() {

$('#myMap').gmap('openInfoWindow', { 'content': '<p>Text Goes
Here</p>' }, this);

});
	

MAS241	Interactive	Web	Design	
Week	8	–	Google	Maps	

7	

By	replicating	the	above	code	with	different	latitude	and	longitude	coordinates,	
you	can	of	course	have	multiple	markers	on	a	map.	

Summary
This	is	quite	complex	compared	to	what	we’ve	previously	covered	but	it	does	
provide	possibilities	for	a	sophisticated	level	of	engagement.	

